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Variable porosity effect on vortex instability 
of a horizontal mixed convection flow 

in a saturated porous medium 
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Abstract-A numerical analysis is made to analyze the variable porosity erect on the vortex mode of 
instability of a horizontal mixed convection boundary layer Row with a uniform free stream velocity in a 
saturated porous medium. The porosity of the medium is assumed to vary exponentially with distance 
from the wall. In the base flow. similarity solutions are obtained for the case ofconstant heat flux boundary 
condition. The stability analysis is based on the linear stability theory and the resulting eigenvalue problem 
is solved by the local similarity method. It is found that the variable porosity effect tends to increase the 
heat transfer rate and destabilize the flow to the vortex mode of disturbance. The effects of fluid-solid 
thermal conductivity ratio on the heat transfer and vortex instability are more significant for a uniform 

porosity medium than for a variable porosity medium. 

1. INTRODUCTION 

THE PROBLEMS of vortex mode of instability in natural 
or mixed convection flow over a heated plate in a 
saturated porous medium have recently received con- 
siderable attention. This is primarily due to a large 
number of technical applications, such as fluid flow 
in geothermal reservoirs, separation processes in 
chemical industries, storage of radioactive nuclear 
waste materials, transpiration cooling, transport pro- 
cesses in aquifers, etc. The instability mechanism is 
due to the presence of a buoyancy force component 
in the direction normal to the plate surface. 

For natural convection boundary layer flow adjac- 
ent to a flat plate, Hsu ef al. [I] and Hsu and Cheng 
[2] analyzed the vortex mode of instability of hori- 
zontal and inclined natural convection flows in a uni- 
form porosity medium. Jang and Chang [3] re-exam- 
ined the same problem for an inclined plate, where 
both the streamwise and normal components of the 
buoyancy force are retained in the momentum equa- 
tions. Jangand Chang [4] studied the vortex instability 
of horizontal natural convection in a porous medium 
resulting from combined heat and mass buoyancy 
effects. The effects of a density extremum on the vortex 
instability of an inclined buoyant layer in porous 
media saturated with cold water were examined by 
Jang and Chang [5,6]. 

For mixed convection boundary layer Row adjacent 
to a flat plate, Hsu and Cheng [7] analyzed the vortex 
instability for a horizontal mixed convection in a uni- 
form porosity medium. By neglecting the normal com- 
ponent of buoyancy force, Cheng [8] showed that, in 
the main flow analysis, the mixed convection bound- 
ary layer flow over an inclined plate in a saturated 

porous medium can be approximated by the similarity 
solution for a vertical plate, with the gravity com- 
ponent parallel to the inclined plate incorporated in 
the Rayleigh number. Following the same approach, 
Hsu and Cheng [9] applied a linear stability analysis 
to determine the condition of onset of vortex insta- 
bility for flow over an inclined surface. It is apparent 
that the instability results in ref. [9] are not valid 
for angles of inclination from the horizontal that are 
small. Thus, Jang and Lie [IO] provided new vortex 
instability results for small angles of inclination from 
the horizontal (4 < 25 ) and more accurate results for 
large angles of inclination (4 > 25 ) than the previous 
study [9]. 

All of the works mentioned above are based on the 
Darcy formulation with uniform porosity. In some 
applications, such as fixed-bed catalytic reactors, 
packed bed heat exchangers and drying, the porosity 
is not uniform but has a maximum value at the wall 
and a minimum value away from the wall. This wall- 
channeling phenomenon has been reported by a num- 
ber of investigators such as Vafai [I I]. Chan- 
drasekhara et al. [l2-141 and Hong et rrl. [I51 for 
forced. natural or mixed convection boundary layer 
flows adjacent to a horizontal or vertical plate. It is 
shown that the variable porosity effect increases the 
temperature gradient adjacent to the wall resulting in 
the enhancement of surface heat flux. However, the 
variable porosity effect on the r~orfes insrabilify of a 
horizontal mixed convection boundary layer flow in 
a porous medium does not seem to have been inves- 
tigated. This has motivated the present investigation. 

The purpose of this paper is to examine the variable 
porosity effect on the vortex instability of a horizontal 
mixed convection flow in a porous medium. The vari- 
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NOMENCLATURE 

A constant on the wall temperature relation Greek symbols 

i 
dimensional spanwise wave number u effective thermal diffusivity of the porous 
constant defined by equation (8) medium 

cl* constant defined by equation (9) B coefficient of the fluid thermal expansion 
.f similarity stream function profile 1 coefficient defined by equation (8) 
F dimensionless disturbance stream E porosity 

function amplitude. $/iaX RcI.!‘~ similarity variable. (~,/s)Ra,’ 3 
9 gravitational acceleration k dimensionless disturbance temperature 
/I local heat transfer coefficient amplitude 
F dimensionless wave number, os/Ra!” 0 dimensionless temperature, 
K permeability of the porous medium (T- T,)/(T,- Tr 1 
111 exponent on wall temperature relation 1,. i., thermal conductivities of the fluid and 
Nu, local Nusselt number, h.u/l, solid phases 
P pressure 4n effective thermal conductivity of the 
P’ perturbation pressure porous medium 
Pf., local Peclet number, U,. s/a, P absolute viscosity 
(I” local heat flux 5 mixed convection parameter, Pei”/Ra, 
RU, modified local Rayleigh number, P density 

K, sB(Tw - T, )i% y stream function 
T temperature ;, disturbance stream function 
T perturbation temperature 6 disturbance stream function amplitude. 
7 disturbance temperature amplitude 
L2 .Y direction disturbance velocity 

amplitude Subscripts 
u, L’, M’ volume averaged velocity in the s, ~1, W condition at the wall 

z directions 02 condition at the free stream. 
d, L’I, w’ disturbance velocity in the s. ~2, : 

directions 
X, y, z axial, normal and spanwise Superscript 

coordinates. * critical condition. 

able porosity is approximated by an exponential func- 
tion. The non-Darcy effects, such as boundary, inertia 
and thermal dispersion effects on the vortex instability 
of a natural or mixed convection flow in a uniform 
porosity medium have been investigated by Chang 
and Jang [ 16,171 and Jang and Chen [ 181; these effects 
are neglected in the present study in order to obtain 
the similarity solution for the base flow [ 12, 131. The 
analysis of the disturbance flow is based on linear 
stability theory. The disturbance quantities are 
assumed to be in the form of a stationary vortex roll 
that is periodic in the spanwise direction, with its 
amplitude function depending primarily on the nor- 
mal coordinate and weakly on the streamwise co- 
ordinate. The resulting eigenvalue problem is solved 
using a variable step-size sixth-order Runge-Kutta 
integration scheme in conjunction with the Gram- 
Schmidt orthogonalization procedure [ 191 to main- 
tain the linear independence of the eigenfunctions. 

2. MATHEMATICAL FORMULATION 

2. I. The base-flow 
Consider the problems of steady mixed convection 

in a semi-infinite porous medium bounded by a hori- 

zontal impermeable heated surface aligned parallel to 
a free stream with uniform velocity U, and tem- 
perature T, as shown in Fig. I, where .Y represents 
the distance along the plate from its leading edge, 
and 1’ the distance normal to the surface. The wall 
temperature is assumed to be a power function of x, 
i.e. T, = T, +A,~“, where A and m are constants. If 
we assume that : (I) local thermal equilibrium exists 
between the fluid and solid phases, (2) the Boussinesq 
approximation is valid, (3) the porosity and effective 
thermal diffusivity of the porous medium are pri- 
marily functions of y coordinate [I I, 151, then the 
governing equations in a variable porosity medium 

FIG. 1. The physical model and coordinate system. 
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based on Darcy’s law are given by 

au alI 
S+&=O 

K(Y) ap a=--- 
/.I as 

l’ = _ K(v) ap ~ P & -Pd(T- T, 1 1 (3) 
(4) 

where K(y) is the permeability of the porous medium ; 
/II the thermal expansion coefficient of the fluid; 
r(y) = I,(y)/(p,c,,), the effective thermal diffusivity 
of the porous medium (i,,,(y) denotes the effective 
thermal conductivity of the saturated porous medium 
and ( pz c,,)r denotes the product of density and spec- 
ific heat of the fluid). The other symbols are defined 
in the Nomenclature. 

The pressure terms appearing in equations (2) and 
(3) can be eliminated through cross differentiation. 
By applying the boundary-layer assumptions and 
introducing the stream function $ which auto- 
matically satisfies equation (I), equations (l)-(4) 
become 

aljsr sl)ar Z’T da(y) dT 
aJl as ar ajl - w s + ~ - a! sy’ (6) 

‘, 

The boundary conditions for this problem are 

at y = 0, L’=-3=o 
as 

. T, = T, +,4x” 

I’-+ a, T = T, , &?!!/=O 
i.Y 

, for free convection 

w Lejy=u,, for mixed convection. 

Here we assume that the porosity E(Y) and 
meability K(y) vary exponentially from the 
[1X 131 

E(Y) = E .(I +deCTtl) 7 

K(y) = K,(l +d* e--l”?) 

*nl -= I-J(l-&)+ i ‘f 
w[mln(&) 

B+I B-l 
---cB (loa) 2 1 

where &is the thermal conductivity of the fluid phase, 
B = RJR, the fluid-solid thermal conductivity ratio 
and B = I .25 ((I -E)/E) ‘W for a packed sphere bed. 

Hence the expression for the effective thermal 
diffusivity has the form 

a( 1’) == I-(l-s,(I+ne-‘i))‘Z 
2, 

+ 
2(l -a,(1 +de-’ c))’ ’ 

I-aB 

*[$$$In(&)--T-E] (lob) 

where a, = k,/(p,c,,),. On introducing the following 
dimensionless similarity variables [ 121 : 

where Ra, = K,g/Y( T, - T, ),/LX, v is the modified 
local Rayleigh number, and choosing y = x/Ra.:l’ 
such that K(y) and E(Y) are purely functions of q for 
the sake of similarity solutions can bejustified [ 12, 131. 

Equations (5) and (6) can be nondimensionalized 
as follows : 

/“+ d*e-” I  +d* e-,, ./‘+Ml +d* em’Y 

nl-2 
+3(l+d*e-‘f)@‘=0 (12) 

(7) 
a(rl) 

per- 
a,8”=tl?1“o- 3 mflf.& $ “k”’ 0’. (13) [ 1 I 

wall 
The corresponding boundary conditions are 

(8) 

(9) 

f(0) = 0, O(0) = 1, O(m) = 0 

.f ‘(al = 0, natural convection 
where E, and K, are the porosity and permeabthty 
at the edge of the boundary layer; d and d* are 
constants whose values are taken as 1.5 and 3, respec- 
tively[l2, 13].Further,cc(~~) = &,(y)/(p,,c,,),alsovar- 
ies from the wall since it is related to the effective mixed convection. (14) 
thermal conductivity of the saturated porous medium 
A,,,(y). i,(y) can be computed according to the fol- From boundary condition (14). it can be seen that the 
lowing semi-analytical expression given by Zehner similarity solutions exist only if M = 0.5 (i.e. constant 
and Schliinder [20] : heat flux). Then equations (12) and (I 3) become 
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f”+ d*e-’ ,+d* e-,,f’+i(l +d* e-VI 

-~(l+d*e-'f)~O'=O (15) 

(16) 

with boundary conditions 

,y = 0, e=1, f=O 

r) + co, 0 = 0, f’ = 0, for natural convection 

f' = 5, for mixed convection 

(17) 

where 

5 = Pe.~“lRa.,, mixed convection parameter 

Pe, = u,x/[x,, local Peclet number. 

It is noted that 5 is the mixed convection parameter, 
which measures the relative importance of forced to 
free convection; 5 = 0 corresponds to the case of 
purely free convection. As d = d* = 0, equations 
(15)-( 17) reduce to Darcy’s model with uniform 
porosity [I, 71. 

In terms of the dimensionless variables, it can be 
shown that the velocities and local Nusselt number 
are given by 

a, Raz’3 
u=yf 

t’= --c( cc [y-:qfflx-“’ (19) 

hX q”(.u)x 
N”, = i, = &( T, - T, ) 

An (0) = T Ra.J”‘[ - O’(O)] 

(20) 

2.2. The disturbanceflow 
The standard method of linear stability theory is 

that in which the instantaneous values of the velocity, 
pressure and temperature are perturbed by small 
amplitude disturbances and the base flow equations 
are subtracted, with terms higher than first order in 
disturbance quantities being neglected. Then we get 
the following disturbance equations for a variable 
porosity medium : 

+ ; g(J’)g +a(J’)$ (25) -’ [ ‘I 
where the barred and primed quantities signify the 
base flow and disturbance components, respectively. 

Following the method of order-of-magnitude 
analysis described in detail by Hsu and Cheng [2], the 
terms &‘/ax, a2 T’/dx’ in equations (2 1) and (25) can 
be neglected. The omission of au’/dx in equation (21) 
implies the existence of a disturbance stream function 
$’ such that 

a*’ 
11’ = - a= , 

, a*’ w = F. (26) 

We assume that the three-dimensional disturbances 
are of the form 

($‘, a’, T’) = [‘+k Jl), 6(-Y Jl), F’(-U, J+] exp (iaz+q(x)) 

(27) 

where a is the spanwise periodic wave number, and 
q(s) = 5 w(s) dx. 

With w(x) denoting the spatial growth factor. For 
the lowest order approximation q(x) = UY. Setting 
w = 0 for neutral stability yields 

(28) 

a+J 1 dK(y) a$ iaK(y)pgj - 
:-aV=mays- 4,’ - P 

T (29) 

aF aT -aT 
+V- +a- -la*--. (30) 

ay ax aJl 

Equations (28)-(30) are solved based on the local 
similarity approximations [2], wherein the dis- 
turbances are assumed to have weak dependence in 
the streamwise direction (i.e. a/ax << a/aq). Intro- 
ducing the following dimensionless quantities : 

(31) 
(22) 

we obtain the following system of equations for the 
local similarity approximations : 

(23) 
F”+ d*e-” 

l+d*ewq 
F’-E’F 

(24) = - (1 +d* e-v)Ra.J’3 I& (32) 
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+LRR~.:‘~ 0’F (33) 

with the boundary conditions 

F(0) = O(0) = F(m) = Q(m) = 0 (34) 

where the primes indicate the derivatives with respect 
to q. Equation (34) arises from the fact that the dis- 
turbances vanish at the wall and in the free stream in 
the porous medium. Equations (32) and (33) con- 
stitute a fourth-order system of linear ordinary differ- 
ential equations for the disturbance amplitude dis- 
tribution F(q) and O(q). For fixed 0, E,, d, d*, and 
4, the solutions F and 0 are eigenfunctions for the 
eigenvalues Ra,r and K. For the case of d = d* = 0, 
the equations reduce to the conventional disturbance 
equations for the uniform porosity assumption [I, 7j. 

3. NUMERICAL METHOD OF SOLUTION 

In the stability calculations, the disturbance equa- 
tions are solved by separately integrating two linearly 
independent integrals. The full solution may be writ- 
ten as the sum of two linearly independent solutions 

F(I) = F, (II)+ =‘2W (35) 

WI) = @,(rl) +J-,Gl). (36) 

The two independent integrals (k;, O,), with i = 1, 
2, may be chosen so that their asymptotic solutions 
are 

Flh,o) = Next (k), F2(rlm) = ev (4,) (37) 

QI (L) = exp WL), Q,b) = 0 (38) 

where 

N = _ (1 +d* e-‘I)E Ra)j3 

A sixth-order variable step size Runge-Kutta inte- 
gration routine is used here to solve first the base flow 
system, equations (15) and (16), and the results are 

stored for a fixed step size, A9 = 0.02, which is small 
enough to predict accurate linear interpolation 
between mesh points. Equations (32) and (33) with 
boundary conditions, equation (34), are then solved 
as follows. For specified u, E,, d, d*, 5, and K, Ra, is 
guessed. Using equations (37) and (38) as starting 
values, the two integrals are integrated separately 
from the outer edge of the boundary layer to the wall 
using a sixth-order Runge-Kutta variable step size 
integrating routine incorporated with the Gram- 
Schmidt orthogonalization procedure [ 191 to main- 
tain the linear independence of the eigenfunctions. 
The required input of the base flow to the disturbance 
equations is calculated, as necessary, by linear inter- 
polation of the stored base flow. From the values of 
the integrals at the wall, E is determined using the 
boundary condition O(0) = 0. A Taylor series expan- 
sion of the second boundary condition F(0) = 0 pro- 
vides a correction scheme for the initial guess of Ra,. 
Iterations continue until the second boundary con- 
dition is sufficiently close to zero (< 10m6, typically). 

4. RESULTS AND DISCUSSION 

Numerical results for the tangential velocity, tem- 
perature profiles, Nusselt number, neutral stability 
curves, the critical Rayleigh number and wave number 
at the onset of vortex instability are presented for 
various values of mixed convection parameter 5, in 
the range of &IO with ambient porosity E, = 0.4 and 
three different values of fluid-solid thermal con- 
ductivity ratio c = A,-/l, = 0.2 (air to asbestos), 1 (air 
to glass wool) and 5 (air to rock wool), respectively. 

Figures 2 and 3 show simultaneously the velocity 
and temperature profiles across the boundary layer 
for the selected values of Q (0.2, 1 and 5) for r = 0 
(purely free convection) and for r = 1 (mixed con- 
vection), respectively. The velocity profiles are 

rl 
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0.6 

f' 2 e 
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1 
0.2 

0 0 
0 2 4 6 8 10 

tl 

FIG. 2. Tangential velocity and temperature profiles across 
the boundary layer for selected values of u for < = 0 (purely 

free convection). 
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--- Uniform porosity [7] 
- Variable porosity 
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f’ 4 

3 

2 

9 
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0 
0 2 4 6 8 

rl 

FIG. 3. Tangential velocity and temperature profiles across 
the boundary layer for selected values of e for 5 = I (mixed 

convection). 

0 

5 
FIG. 4. Alternation of Nu,/Ru!" with 5 for various values 

of 0. 
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5 
FIG. 5. Neutral stability curves for various values of B with FIG. 8. Critical wave number as a function of 5 for various 

5 = 0 (purely free convection). values of 0. 
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-Variable porosity .’ 
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FIG. 6. Neutral stability curves for various values of 0 with 
5 = I (mixed convection). 
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FIG. 7. Critical Rayleigh number as a function of 5 for 
various values of 0. 
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referred to the left and lower axes, while the tem- Darcy’s law with uniform porosity [I, 71 corresponds 
perature profiles are referred to the right and upper to the case of d = d* = 0. It is seen that the variable 
axes. The dashed lines represent the results for a uni- porosity effect increases the tangential velocity and 
form porosity medium while the solid lines are for a reduces the thermal boundary layer thickness leading 
variable porosity medium. It should be noted that to an enhancement of heat transfer rate. Figure 4 

(a) 

(b) 

-n -x12 0 n12 x 

uz 

FIG. 9. The streamlines (solid lines) and isotherms (dashed lines) of the secondary flow at the onset of 
instability for uniform porosity media with 5 = 1 and (a) u = 0.2, (b) u = 1, (c) D = 5. 
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(a) 4 
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4 
f I 

t 
I 
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I I 
I I 
I I 
1 I -3 

0 

az 
FIG. 10. The streamlines (solid lines) and isotherms (dashed lines) of the secondary flow at the onset of 

instability for variable porosity media with c = I and (a) (r = 0.2, (b) 0 = I. (c) 0 = 5. 

shows the alternation of Nusselt number with < for Numerical results indicate that high conductivity of 
selected values of Q (0.2, 1 and 5). It follows from the solid phase (i.e. small values of a) increases the 
equation (20) that the effect of c plays a role on the heat transfer rate. It is also seen that, as would be 
heat transfer rate not only through the temperature expected, the variable porosity effect tends to increase 
gradient at the wall but also through L,(O)/&. the heat transfer rate. 
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Figures 5 and 6 show the neutral stability curves, 
in terms of the Rayleigh number Ra, and the dimen- 
sionless wave number k: for selected values of CT (0.2, 
1 and 5) for 5 = 0 (purely free convection) and 5 = 1, 
respectively. It is observed that as Q decreases, the 
neutral stability curves shift to higher Rayleigh num- 
ber and lower wave number, indicating a stabilization 
of the flow to the vortex instability. Plotted with 
dashed lines in the figures for comparison are the 
neutral stability curves for uniform porosity media 
(d = d* = 0) [I. 71. It is seen that when the variable 
porosity effect is considered, the neutral stability 
curves shift to lower Rayleigh number and higher 
wave number, indicating a destabilization of the flow. 

The critical Rayleigh number RUT and wave num- 
ber k”, which mark the onset of longitudinal vortices, 
can be found from the minima of the neutral stability 
curves. The critical Rayleigh number and wave num- 
ber are plotted as function oft for selected values of 
0 in Figs. 7 and 8, respectively. Note that the case of 
Darcy’s law with uniform porosity for a horizontal 
surface was considered by Hsu er N/. [I] for a natural 
convection and by Hsu and Cheng [7] for a mixed 
convection. For d = d* = 0, the present results are in 
good agreement with those of refs. [I, 71. The results 
indicate that the variable porosity effect tends to de- 
stabilize the flow to the vortex mode of disturbance. 
It can also be seen that decreasing the value of cr would 
increase the critical Rayleigh number and stabilize the 
flow. Moreover, the larger the values of 5, the more 
stable is the flow for the vortex instability. It is appar- 
ent from Fig. 8 that if either o or < increases. the critical 
\\ :tve number L* increases. A close look at Figs. 7 and 
8 indicates that the variable porosity effect is more 
prcuiounced as the mixed convection parameter 5 
increases. For c = 0.2 and 5 = 0 (natural convection), 
the critical Rayleigh number is reduced by about 
52.2% relative to the uniform porosity result, while 
for 5 = 10 (mixed convection), the critical Rayleigh 
number is dramatically reduced by about 73.5%. Fur- 
thermore, one can see that the effects of thermal con- 
ductivity ratio u on RUT and k” are more significant 
for a uniform porosity medium than for a variable 
porosity medium. 

Figures 9 and 10 show the streamlines (solid lines) 
and isotherms (dashed lines) for the secondary flow 
at the onset of instability for uniform and variable 
porosity media, respectively, with three different 
values of (T (0.2, I, 5) and 5 = 1. It is seen that as the 
fluid-solid thermal conductivity ratio CT increases, the 
size of the vortex roll decreases resulting in high dense 
streamlines near the wall. It is noted that this trend is 
more apparent for a uniform porosity medium (Fig. 
9) than for a variable porosity medium (Fig. IO). By 
comparing Fig. 9 with Fig. IO, it shows a relatively 
high density of streamlines near the heated wall for 
a variable porosity medium. This implies that for a 
variable porosity medium the fluid near the heated 
wall moves relatively fast when compared with a uni- 
form porosity medium. Consequently, for a variable 

porosity medium, this fast moving fluid near the 
heated wall convects relatively more energy away thus 
causing a larger temperature gradient and making 
the flow more susceptible for the vortex mode of 
instability. 

5. CONCLUSIONS 

The effects of variable porosity and fluid-solid ther- 
mal conductivity ratio cr to the vortex instability of 
horizontal mixed convection boundary layer flow in 
saturated porous medium have been examined by a 
linear stability theory. The numerical results dem- 
onstrate that the variable porosity effect tends to 
enhance the heat transfer rate and destabilize the flow. 
As the fluid-solid thermal conductivity ratio 
decreases, both the Nusselt number and critical Ray- 
leigh number increase and the flow is more stable for 
the vortex mode of disturbance. It is also shown that 
the variable porosity effect is more pronounced as the 
mixed convection parameter 5 increases. Moreover, 
the effects of fluid-solid thermal conductivity ratio 
on the Nusselt number. critical Rayleigh and wave 
numbers are more significant for a uniform porosity 
medium than for a variable porosity medium. It 
should be noted that when the channeling effect due 
to the variable porosity is considered, it will usually 
be necessary to also account for the boundary viscous 
friction effect. Unlike the variable porosity effect, the 
boundary effect is shown to stabilize the flow (161. 
Thus, the boundary effect should be incorporated in 
the future analysis. The combined effects of variable 
porosity and boundary friction on the vortex insta- 
bility is currently under investigation by the authors. 
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